Et si on en finissait avec

CRUD 7

Mort au tirant

Y=t Julien Vinber
IR https://www.linkedin.com/in/julienvinber/

AFUP Montpellier - 28 octobre 2020

s S S

https://www.linkedin.com/in/julienvinber/

o
A Disclaimer

J'ai utilisé, j'utilise et j'utiliserais
encore CRUD

o
A Disclaimer

Un bon dev peut faire de bonne
chose méme avec une mauvaise
archi

Create . créer
Read : lire

Update . mettre a jour

Delete : supprimer

En architecture logiciel

CRUD n’est pas une vraie architecture.

En général on peut utiliser ce terme quand l'application se calque fortement sur la BDD en utilisant
massivement les 4 opérateurs.

Avantages

Rapide
- Simple

- Souple
Sur

Exemple avec Symfony

/**
* @ORM\Entity()
=/
class Tag implements \JsonSerializable
{
/**
* @ORM\ Id
* @ORM\GeneratedValue
* @ORM\Column (type="integer")
=/

private int $id;

/**
* @ORM\Column (type="string", unique=true)
=/

private string $name;

Exemple avec Symfony

/**
* @ORM\Entity ()
=/

class Post

{

/**
* @ORM\ Id
* @ORM\GeneratedValue
* @ORM\Column (type="integer")
*/
private $id;

/**
* @ORM\Column (type="string")
* @Assert\NotBlank
*/

private S$title;

/**
* @ORM\Column (type="string")
*/

private $slug;

/**
* @ORM\Column (type="string")
* @Assert\NotBlank (message="post.blank summary")
* @Assert\Length (max=255)
)

private $summary;

/**
* @ORM\Column (type="text")
* @Assert\NotBlank (message="post.blank content")
* @Assert\Length (min=10, minMessage="post.too short content")
=/

private S$content;

/**
* @ORM\Column (type="datetime")
=/

private S$publishedAt ;

/**
* @ORM\ManyToOne (targetEntity="App\Entity\User")
* @ORM\JoinColumn (nullable=false)
*/

private S$author;

/**
* @ORM\OneToMany (
* targetEntity="Comment",
b mappedBy="post",
* orphanRemoval=true,
* cascade={"persist"}
*)
* @ORM\OrderBy ({"publishedAt": "DESC"})
=/

private $comments ;

/**
* @ORM\ManyToMany (targetEntity="App\Entity\Tag",
* @ORM\JoinTable (name="symfony demo post tag")
* @ORM\OrderBy ({"name": "ASC"})

cascade={"persis

* @Assert\Count (max="4", maxMessage="post.too many tags")

=/
private $tags;

class PostType extends AbstractType
{

public function buildForm (FormBuilderInterface S$builder, array S$options): void
{
Sbuilder
->add ('title', null, [
'attr' => ['autofocus' => true],

'label' => 'label.title',
1)
->add ('summary', TextareaType ::class, [
'help' => 'help.post summary' ,
'label' => 'label.summary' ,
1)
->add ('content', null, [
'attr' => ['rows' => 20],
'help' => 'help.post content',
'label' => 'label.content',
1)
->add ('publishedAt' , DateTimePickerType ::class, [
'label' => 'label.published at',
'help' => 'help.post publication' ,
1)
->add ('tags', TagsInputType ::class, [
'label' => 'label.tags',
'required' => false,
1)
->addEventListener (FormEvents ::SUBMIT, function (FormEvent S$Sevent) {
Spost = Sevent->getData ();
if (null !== $postTitle = S$post->getTitle ()) {
Spost->setSlug ($this->slugger ->slug ($postTitle)->lower ());

/**
* @Route ("/admin/post")

* @IsGranted (”ROLEiADMIN”)

“/

class BlogController extends AbstractController

{

/**
* @Route ("/new", methods="GET|POST", name="admin post new")
“/
public function new (Request $request): Response
{
$post = new Post ();

Spost->setAuthor ($Sthis->getUser ());

Sform = S$this->createForm (PostType::class, S$post)
->add ('saveAndCreateNew' , SubmitType ::class);

$form->handleRequest ($request) ;

if ($form->isSubmitted () && S$form->isvValid ()) {
Sem = $this->getDoctrine ()->getManager ();
Sem->persist ($post) ;
Sem->flush () ;
$this->addFlash ('success', 'post.created successfully');
if ($form->get ('saveAndCreateNew')->isClicked ()) {
return $this->redirectToRoute ('admin post new');

return S$this->redirectToRoute ('admin post index');

return $this->render ('admin/blog/new.html.twig' , [
'post' => $post,
'form' => S$form->createView (),

1)

/**
* @Route ("/{id<\d+>}", methods="GET", name="admin post show")
=/
public function show (Post $post): Response
{
Sthis->denyAccessUnlessGranted (PostVoter ::SHOW, S$post, 'Posts can only be shown to their authors.');
return $this->render ('admin/blog/show.html.twig' , [
'post' => S$post,
1)

/**
* @Route ("/{id<\d+>}/edit", methods="GET|POST", name="admin post edit")
* @IsGranted("edit", subject="post", message="Posts can only be edited by their authors.")
&

public function edit (Request S$request, Post $post): Response

{

$form = $this->createForm (PostType::class, $post);
$form->handleRequest ($request);

if ($form->isSubmitted () && $form->isValid ()) {
Sthis->getDoctrine () ->getManager ()->flush () ;

Sthis->addFlash ('success', 'post.updated successfully');

return $this->redirectToRoute ('admin post edit' , ['id' => Spost->getId()]);
return S$this->render ('admin/blog/edit.html.twig' , [

'post' => $post,

'form' => S$form->createView (),
1):

/**
* @Route("/{id}/delete", methods="POST", name="admin post delete")
* @IsGranted("delete", subject="post")
&

public function delete (Request S$request, Post S$post): Response

{

if (!'$this->isCsrfTokenvValid ('delete', $request->request->get ('token'))) {

return $this->redirectToRoute ('admin post index');
}
$Spost->getTags () ->clear () ;

Sem = S$this->getDoctrine () ->getManager () ;
Sem->remove (Spost) ;
Sem->flush () ;

Sthis->addFlash ('success', 'post.deleted successfully');

return $this->redirectToRoute ('admin post index');

Sur le papier c’est GENIAL...

Sur le PAPIER c’est genial...

En vrais

Bombe a retardement

Inconvénients

Rapide On délégue les responsabilités
- Simple
- Souple
Sur

Inconvénients

Ra plde Car c’est difficile de faire des choses avancé ?
- Simple
- Souple
Sur

Inconvénients

Rapide On vire les contraintes et cela passe.
- Simple
- Souple
Sur

Inconvénients

R3 plde Dans la vie on ne peut jamais tout avoir.
- Simple
- Souple
Sur

Historigue

Avant (il y as longtemps) :

Lourd

CycleenV

Plein de controle

Des administrateur de base de données

Merise : Sainte base de données priée
pour nous.

Historigue

L'arrivée du web :

Petit

Peux d’enjeux

Sans conséquence
Vite fait, btenfait
MySQL en MyISAM

Vo e 047 saon Lo

Historigue

Aujourd’hui on a pris le pire des deux

Application lourde

Sainte BDD
Agile

o Onfait, puis on réfléchit

o Fait simple on améliorera apres (ou pas)

e C(estles dev qui font des modif au besoin sur la BDD
=> Structure de BDD qui ne ressemble a plus rien.

Un seul mots d’ordre : rapide (CRUD c’est bien;)

Tuons les BDD et CRUD

Aujourd’hui BDD d’état

=>vérité aun temps T

Tuons les BDD et CRUD

Pas d’historique

Il faut I'ajouter, mais partiel.

Tuons les BDD et CRUD

Un état n’est qu’une représentation a un temps T d’un systeme.

Au moindre probleme la base part en live.

Tuons les BDD et CRUD

Solution

'action ou événement est une vérité absolue.

'état n’est que la résultante de ces évenements.

Workflow

Workflow

Introduction de la notion d'événement (transaction)

Transaction_1 Place_B

Transaction_Start Place_A Transaction_2

_/

Event Sourcing

Pas garantie a 100%

Event Sourcing

Une seule vérité : I'event

=> on enregistre les event

Event Sourcing
Un event est défini par :

e Contraintes d'activations

e Contraintes sur les data
[

® Nos regles métier

Est uniguement par les regles métier de I'event

Event Sourcing
L'état

® (’est un calcul a partir des évents
e Ce n'est qu’une projection parmi d’autres
e On peut créer des états adaptés a notre besoin

